Detection of Multiple Electrical Sources in Tissue Using Ultrasound Current Source Density Imaging
نویسندگان
چکیده
Accurate three dimensional (3D) mapping of bioelectric sources in the body with high spatial resolution is important for the diagnosis and treatment of a variety of cardiac and neurological disorders. Ultrasound current source density imaging (UCSDI) is a new technique that maps electrical current flow in tissue. UCSDI is based on the acousto-electric (AE) effect, an interaction between electrical current and acoustic pressure waves propagating through a conducting material and has distinct advantages over conventional electrophysiology (i.e., without ultrasound). In this study, UCSDI was used to simultaneously image current flow induced in two tissue phantoms positioned at different depths. Software to simulate AE signal was developed in MatlabTM to complement the experimental model and further characterize the relationship between the ultrasound beam and electrical properties of the tissue. Both experimental and simulated images depended on the magnitude and direction of the current, as well as the geometry (shape and thickness) and location of the current sources in the ultrasound field (2.25MHz transducer). The AE signal was proportional to pressure and current with detection levels on the order of 1 mA/cm at 258kPa. We have imaged simultaneously two separate current sources in tissue slabs using UCSDI and two bridge circuits to accurately monitor current flow through each source. These results are consistent with UCSDI simulations of multiple current sources. Real-time 3-D UCSD images of current flow automatically co-registered with pulse echo ultrasound potentially facilitates corrective procedures for cardiac and neural abnormalities.
منابع مشابه
Complementary Detection of Multiple Electrical Sources in Tissue Using Acoustoelectric Effects.
Accurate 3-D mapping of multiple bioelectric sources in nerve fibers with high spatial resolution is challenging for the diagnosis and treatment of a variety of neural abnormalities. Ultrasound current source density imaging exploits the acoustoelectric (AE) effect, an interaction between electrical current and acoustic pressure waves propagating through a conducting material, and has distinct ...
متن کاملThe modeling of induced current density in eyes from static magnetic fields produce by MR scanner
Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...
متن کاملFour-dimensional ultrasound current source density imaging of a dipole field.
Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution i...
متن کاملInvestigation of Shape Functions Role on the Mesh-free Method Application in Soft Tissue Elastography
In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound imaging technique is developed. This problem consists in computing the deformation of an elastic non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are approximate...
متن کاملMeasuring the acoustoelectric interaction constant using ultrasound current source density imaging.
Ultrasound current source density imaging (UCSDI) exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity, to map electrical conduction in the heart. The conversion efficiency for UCSDI is determined by the AE interaction constant K, a fundamental property of all materials; K directly affects the magnitude of the detected voltage signal in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010